A continuous random variable X has a density function given by:
\[ \begin{align}
f(x) &= 2e^{-2x} \qquad x \ge 0 \\
&= 0 \qquad \text{elsewhere}
\end{align}\]
Find the probability of X taking a value between 0 and 3, given it has taken a value less than 4.
Calculate the probability of x taking a value in the larger interval.
\[ \begin{align}
\text{Pr}(X \le 4) &= \int_0^4 2e^{-2x} dx \\
&= [ -e^{-2x}]_0^4 \\
&= -e^{-8} - (-e^0) \\
&= 1 - e^{-8}
\end{align} \ \]
Calculate the probability of x taking a value in the smaller interval
\[ \begin{align}
\text{Pr}(X \le 3) &= \int_0^3 2e^{-2x} dx \\
&= [ -e^{-2x}]_0^3 \\
&= -e^{-6} - (-e^0) \\
&= 1 - e^{-6}
\end{align} \ \]
Use the expression for conditional probabilty
\[ \begin{align}
\text{Pr}(0 \le X \le 3 | X \le 4)
&= \frac{\text{Pr}(X \le 3)}{\text{Pr}(X \le 4)} \\
&= \frac{ 1 - e^{-6}}{1 - e^{-8}}
\end{align} \ \]