Evaluate
\[ \frac{d}{dx} (\sqrt{x^2+1} \times \sqrt{(x+1)^3}\ ) \quad \ \]
Re-express the square roots as numeric powers before differentiating.
\[ \begin{align}
\frac{d}{dx} (x^2+1)^{1/2} \times (x+1)^{3/2}
\end{align} \ \]
Using the product rule gives
\[ \begin{align}
&\frac{d}{dx} (x^2+1)^{1/2} \times (x+1)^{3/2} \\
&= -\frac{1}{2}(x^2+1)^{-1/2} 2x \times (x+1)^{3/2} \\
&+ (x^2+1)^{1/2} \times \frac{3}{2}(x+1)^{1/2} \times 1 \\
\end{align} \ \]
Tidy the expression
\[ \begin{align}
&= -x(x^2+1)^{-1/2} \times (x+1)^{3/2} \\
&+ (x^2+1)^{1/2} \times \frac{3}{2}(x+1)^{1/2} \\
&= \frac{3}{2} \sqrt{x^2+1} \times \sqrt{x+1} - \frac{x \sqrt{(x+1)^3}}{\sqrt{x^2+1}}
\end{align} \ \]