Divide
\[ \begin{align}
&\frac{x^2+3x+2}{x-2} \quad \text {by} \quad \frac{x^2-4}{x+3}
\end{align} \ \]
Invert the divisor and multiply the two fractions
\[ \begin{align}
\frac{x^2+3x+2}{x-2} \div \frac{x^2-4}{x+3}
&= \frac{x^2+3x+2}{x-2} \times \frac{x+3}{x^2-4}
\end{align} \ \]
Multiply the numerators. Look for factors first.
\[ \begin{align}
&= \frac{(x+2)(x+1)(x+3)}{(x-2) \times (x^2-4)}
\end{align} \ \]
Multiply the denominators. Look for factors first.
\[ \begin{align}
&= \frac{(x+2)(x+1)(x+3)}{(x-2)(x-2)(x+2)} \\
&= \frac{(x+1)(x+3)}{(x-2)^2}
\end{align} \ \]
After cancelling common factors in numerator and denominator