Show that for vectors u, v and w
\[ \begin{align}
(u + v) + w &= u + (v + w)
\end{align} \ \]
and
\[ \begin{align}
\parallel cv \parallel &= |c| \parallel v \parallel
\end{align} \ \]
Use components. For the first property
Let the components be
\[
\langle u_1,u_2 \rangle, \quad \langle v_1,v_2 \rangle, \quad \langle w_1,w_2 \rangle \quad \ \]
Then
\[ \begin{align}
(u + v) + w
&=(\langle u_1,u_2 \rangle + \langle v_1,v_2 \rangle) + \langle w_1,w_2 \rangle \\
&= \langle (u_1 + v_1)+ w_1, (u_2+ v_2)+ w_2 \rangle \\
&= \langle u_1 + (v_1+ w_1), u_2+ (v_2+ w_2) \rangle \\
&= \langle u_1,u_2 \rangle + (\langle v_1,v_2 \rangle) + \langle w_1,w_2 \rangle) \\
&= u + (v+w)
\end{align} \ \]
Squares are always positive
\[ \begin{align}
\parallel cv \parallel &= \parallel \langle cv_1, cv_2 \rangle \parallel \\
&= \sqrt{(cv_1)^2+(cv_2)^2} \\
&= \sqrt{c^2(v_1)^2+c^2(v_2)^2} \\
&= c\sqrt{(v_1)^2+(v_2)^2} \\
&= |c|\parallel v \parallel
\end{align} \ \]