Two vectors \( v = \langle -2, 5 \rangle \) and \( w = \langle 3, 4 \rangle \) are given. Find
(a) 1/3 w
(b) v + 2w
(c) w - v
The scalar multiple of a vector is the scalar multiple of its components.
\[ \begin{align}
\frac{1}{3} w &= \frac{1}{3}\langle 3, 4 \rangle \\
&= \langle 1, 4/3 \rangle \\
\end{align} \ \]
Add the components of the two vectors
\[ \begin{align}
v + 2w &= \langle -2, 5 \rangle + 2\langle 3, 4 \rangle \\
&= \langle -2, 5 \rangle + \langle 6, 8 \rangle \\
&= \langle -2+6, 5+8 \rangle \\
&= \langle 4, 13 \rangle
\end{align} \ \]
Subtract the components of the second from the first
\[ \begin{align}
w - v &= \langle 3, 4 \rangle - \langle -2, 5 \rangle \\
&= \langle 5, -1 \rangle
\end{align} \ \]