The polynomial
\[ \begin{align}
p(x) &= x^4 - 4x^3 + ax^2 + bx - 6
\end{align} \ \]
leaves a remainder of 6 when divided by x + 1. If x - 2 is a factor, find the values of a and b.
Find two equations in the unknowns a and b.
From the remainder theorem,
\[ \begin{align}
p(-1) &= (-1)^4 - 4(-1)^3 + a(-1)^2 + b(-1) - 6 \quad \\
6 &= 1 + 4 + a - b - 6 \\
a - b &= 7 \quad \quad (1)
\end{align} \ \]
From the factor theorem,
\[ \begin{align}
p(2) &= (2)^4 - 4(2)^3 + a(2)^2 + b(2) - 6 \quad \\
0 &= 16 - 32 + 4a + 2b - 6 \\
2a + b &= 19 \quad \quad (2)
\end{align} \ \]
Eliminate b to find a first.
Adding (1) and (2):
\[ \begin{align}
3a &= 26 \\
a &= 26/3
\end{align} \ \]
from (1),
\[ \begin{align}
26/3 - b &= 7 \\
b &= 26/3 - 7 \\
&= 5/3
\end{align} \ \]
So
\[ p(x) = x^4 - 4x^3 + \frac{26}{3}x^2 + \frac{5}{3}x - 6 \]