Find the derivative of \( f(x) = x^3 \) using the limit definition of the derivative.
Substitute the expression into the definition.
\[ \begin{align}
f\ '(x) &= \lim_{h \to 0} \frac{f(x+h)- f(x)}{h} \\
&= \lim_{h \to 0} \frac{(x+h)^3- x^3}{h} \\
&= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} \\
&= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}
\end{align} \ \]
Cancel h and apply the definition of the limit.
\[ \begin{align}
&= \lim_{h \to 0} (3x^2 + 3xh + h^2) \\
&= 3x^2
\end{align} \ \]