Find the derivative of
\[ f(x) = \sqrt x \]
using the limit definition of the derivative.
Substitute the expression into the definition.
\[ \begin{align}
f'(x) &= \lim_{h \to 0} \frac{f(x+h)- f(x)}{h} \\
&= \lim_{h \to 0} \frac{\sqrt{x+h}- \sqrt x}{h}
\end{align} \ \]
Multiply numerator and denominator by (sqrt(x+h)+ sqrt(x))
\[ \begin{align}
&= \lim_{h \to 0} \frac{(\sqrt{x+h}- \sqrt x)(\sqrt{x+h}+ \sqrt x)}
{h(\sqrt{x+h} + \sqrt x)} \\
&= \lim_{h \to 0} \frac{(x + h - x)} {h(\sqrt{x+h} + \sqrt x)} \\
&= \lim_{h \to 0} \frac{h} {h(\sqrt{x+h} + \sqrt x)} \\
\end{align} \ \]
Cancel h and apply the definition of the limit.
\[ \begin{align}
&= \frac{1} {2\sqrt{x}} \\
\end{align} \ \]