Find the derivative of \( f(x) = x^3 + 3x \) at x = 1 using the limit definition of the derivative.
Substitute the expression into the definition.
\[ \begin{align}
f\ '(1) &= \lim_{h \to 0} \frac{f(1+h)- f(1)}{h} \\
&= \lim_{h \to 0} \frac{(1+h)^3 + 3(1+h) - (1+3)}{h} \\
&= \lim_{h \to 0} \frac{1 + 3h + 3h^2 + h^3 + 3+ 3h - 1 - 3}{h} \\
&= \lim_{h \to 0} \frac{6h + 3h^2 + h^3}{h} \\
&= \lim_{h \to 0} (6 + 3h + h^2) \\
\end{align} \ \]
Apply the definition of the limit.
As h approaches zero, the value of the expression approaches 6.
\[ \therefore f\ '(1)= 6. \quad \quad \]