Evaluate
\[ \frac{d}{dx} x \sqrt{(1-x^2)} \]
Use the square root term as the second part of the product
\[ \begin{align}
&\frac{d}{dx} (x \sqrt{(1-x^2)}) \\
&= \frac{d}{dx}(x)\times \sqrt{1-x^2} + x \frac{d}{dx} (\sqrt{1-x^2}) \\
&= \sqrt{1-x^2} + \frac{x}{2\sqrt{1-x^2}}\frac{d}{dx}(1-x^2) \\
&= \sqrt{1-x^2} + \frac{x(-2x)}{2\sqrt{1-x^2}} \\
&= \sqrt{1-x^2} + \frac{-x^2}{\sqrt{1-x^2}}
\end{align} \ \]
Note the use of the chain rule for differentiating the square root.
Simplify the expression by putting everything over a common denominator.
\[ \begin{align}
&= \frac{1 - x^2 - x^2}{\sqrt{1-x^2}} \\
&= \frac{1 - 2x^2}{\sqrt{1-x^2}} \\
\end{align} \ \]