Evaluate
\[ \frac{d}{dx}(x^2 \sqrt{x+k}) \]
Use the term in x squared as the first part of the product. Then
\[ \begin{align}
\frac{d}{dx}(x^2 \sqrt{x+k})&= \frac{d}{dx}(x^2) \times \sqrt{x+k}
+ x^2 \frac{d}{dx} (\sqrt{x+k}) \\
&= 2x \sqrt{x+k} + x^2 \frac{1}{2}\frac{1}{\sqrt{x+k}} \\
\end{align} \ \]
Simplify the expression.
\[ \begin{align}
&= \frac{4x(x+k) + x^2}{2\ \sqrt{x+k}} \\
&= \frac{5x^2 + 4kx}{2\ \sqrt{x+k}} \\
\end{align} \ \]