Evaluate
\[ \frac{d}{dx}\frac{(2x+1)^2}{x} \]
Express the denominator as a negative power
\[ \begin{align}
&\frac{d}{dx}\frac{(2x+1)^2}{x} \\
&= \frac{d}{dx}((2x+1)^2 \times x^{-1}) \\
&= \frac{d}{dx}(2x+1)^2 \times x^{-1}
+ (2x+1)^2 \times \frac{d}{dx} x^{-1}\\
&= 4(2x+1) x^{-1} - (2x+1)^2 \times x^{-2}
\end{align} \ \]
Note the use of the chain rule to differentiate the \( (2x+1)^2 \) term.
Simplify the result.
\[ \begin{align}
&= \frac{(2x+1)(4x - (2x+1))}{x^2} \\
&= \frac{(2x + 1)(2x - 1)} {x^2} \\
\end{align} \ \]